Y

PokerEye

Al-Powered Poker Hand Recognition System

Product of Aydie’s Avenue

Averue

aydie.in

Mangalore University
St Philomena College, Puttur

Detailed Project Report On

o

PokerEye

Al-Powered Poker Hand Recognition System

Submitted in partial fulfilment of the requirements for the Degree of
Bachelor of Science (B.Sc)

Aditya Dinesh K (UO5PH2150028)
Jithesh B (UO5PH21S0032)
Ahammad Sabik (UO5DP21S0115)
Team Code: MINPRO2400T

Under the Guidance of

Prof. Varija Das
Department of Computer Science
St Philomena Collage, Puttur, DK, 574202

Ly
\ rhl'lll_o MENA co\-\&o"/

Department of Computer Science
St Philomena Collage, Puttur, DK, 574202
2023 - 2024

visit: aydie.in/projects

S <
\r”lm_oMEN R co\-\j‘e /

St Philomena College
Philonagara, Darbe, Puttur, 574202

Dept of Computer Science
CERTIFICATE

Certified that this is a bonafide record of the Mini Project Work entitled “Poker Eye”
carried out by Aditya Dinesh K(UO5PH2150028), Jithesh B (UO5PH215S0032) and
Ahammad Sabik (UO5DP21S0115) of Ill B.Sc during the academic year 2023-24 for the

partial fulfilment of the requirement to award a Bachelor of Science(B.Sc) Degree

by Mangalore University.

Prof. Varija Das
Head of the Dept

APPROVED
PRINCIPAL
Submitted to the University Examination on at St Philomena College,
Puttur Examination Center.
EXAMINERS
Project External Examiner Supervisor

visit: aydie.in/projects

Declaration

We hereby declare that the Mini Project Work entitled “Poker Eye,” submitted to
Mangalore University, is an original work conducted by us under the guidance of Prof.
Varija Das during the academic year 2023-24. This report is submitted to the University

in partial fulfillment of the requirements for the award of the Bachelor of Science
degree. We confirm that this dissertation is an authentic record of the work carried out

by us and has not been submitted previously to any other institute or university.

Aditya Dinesh K Jithesh B Ahammad Sabik
UUCMS: UO5PH2150028 UUCMS: UO5PH21S0032 UUCMS: UO5DP21S0115

visit: aydie.in/projects

Acknowledgement

We extend our sincere gratitude to everyone who directly or indirectly assisted us
in completing this project. Without their support, this achievement would not have

been possible.

Our heartfelt thanks go to Rev. Dr. Antony Prakash Monteiro, Principal of

St. Philomena College, Puttur, for his unwavering support. We are especially
grateful to Prof. Varija Das, Head of the Computer Science Department, for her
invaluable guidance and assistance. We also appreciate all the professors and

college staff for their support and for providing the necessary information.
Special thanks to our friends for their help, support, and constructive feedback.
Lastly, we thank our parents for their financial and emotional support, and we

acknowledge each other's teamwork and dedication, which made this success

possible.

Date:
Place: Puttur

Aditya Dinesh K Jithesh B Ahammad Sabik

visit: aydie.in/projects

Index

Content

1 Introduction 1
2 Objective 2
3 Project Category and Methodology 2
4 System Architecture 2
5 Process Description 3
6 Hardware and Software Requirements 4
7 Training Data 5
8 MongoDB 14
9 What is Poker and more about it 17
10 Context Flow Diagram 19
1 Data Flow Diagram 21
12 Detailed Analysis of the Code and Algorithm 24
13 PokerEyeDetector.py (Main Function) 24
14 PokerHandFunction.py 26
15 MongoDBTest.py 29
16 Running the Model 30
17 Scope of the Solution 32
18 Work Plan and Timeline 33
19 Expected Outcomes 35
20 Accuracy Testing 37
21 Limitations 39
22 Future Work 41
23 Conclusion 43

visit: aydie.in/projects

1. Introduction

Poker, a game of strategy and chance, hinges on players' ability to
recognize and evaluate their hand combinations. Traditionally, this relies on visual
identification of cards, which can be time-consuming and prone to errors,
especially in fast-paced games. This project proposes an innovative solution - an
Al-powered system that automates poker hand recognition in real-time using
computer vision and machine learning techniques.

1.1 Background and Significance

Poker has evolved from a leisure activity to a competitive sport with
professional leagues and online tournaments. Mastering hand recognition is
crucial for strategic decision-making. However, relying solely on human
observation introduces limitations. Players might struggle with:

e Speed: Identifying complex hand combinations like straight flushes or full
houses can be challenging under time pressure.

e Accuracy: Fatigue, distractions, or rapid gameplay can lead to
misidentification of cards, potentially impacting strategic decisions.

e Consistency: Maintaining peak focus and accuracy throughout a long
game is demanding.

1.2 Problem Addressed

This project addresses the aforementioned limitations by developing an Al
system that automatically recognises poker hands from a live video stream. This
eliminates the need for manual identification, offering several advantages:

e Increased Speed: Real-time hand recognition allows quicker decisions and
improved gameplay efficiency.

e Enhanced Accuracy: The Al model, trained on a vast dataset of poker card
images, can identify hands with high accuracy, minimizing errors.

e Reduced Fatigue: The system frees players from the mental strain of
constant hand recognition, allowing them to focus on higher-level
strategies.

e Improved Consistency: The model maintains consistent performance
throughout a game, regardless of external factors.

2. Objectives

The primary objective of this project is to develop a functional Al system
capable of recognizing standard poker hand combinations (e.g., straight flush, full
house) displayed in a live video feed. To achieve this, the project will:

e To leverage Python programming language for development, commonly
used in Al applications.

e To employ deep learning techniques to train an Al model capable of
analyzing and classifying poker hand images.

e To integrate the trained model with a computer vision system to capture
real-time video input from a webcam or external camera.

e To design a user-friendly interface to display the identified hand
combination in real time.

3. Project Category and Methodology

This project falls under the category of Artificial Intelligence (Al), specifically
Computer Vision.

3.1 Development Approach

e Programming Language: Python is a versatile language widely used for Al
development due to its extensive libraries and ease of use.

e Model Training: Deep learning techniques, a subset of Al, will be employed
to train the model. Popular deep-learning frameworks like Ultralytics and
OpenCV will be utilized. These frameworks provide pre-built functions and
algorithms for efficient model development.

e Computer Vision: OpenCV, an open-source library for computer vision, will
be used to capture video input from a camera and process the video
frames for analysis by the Al model.

e Development Life Cycle (SDLC): The Agile methodology will be adopted
for project development. Agile promotes an iterative and flexible approach,
allowing for continuous improvement and adaptation based on testing and
feedback.

4. System Architecture

The system will comprise three key modules that interact seamlessly to
achieve hand recognition (see Figure 4.1):

e Video Capture Module: This module utilises OpenCV to capture real-time
video from a webcam or external camera. Each video stream frame will be
extracted and sent for further processing.

e Al Model: The core of the system, this Al model is trained on a dataset of
labelled poker card images. The model analyzes each video frame,
identifying the hand combination present based on its training data.

e User Interface: This module displays the hand combination recognized by
the Al model in real-time. Players can easily view the identified hand
combination for strategic decision-making.

System Architecture Diagram
15 FPS to
60 FPS
Video Al User
Capture % Model ﬁ Interface
Module Module
Sends Sends
Video Result
Frames

Analyzes and categorizes
images based on predefined
criteria.

Figure: 1 System Architecture Diagram

5. Process Description
The system operates through a sequential process:

1. Video Capture: The Video Capture Module initiates by capturing video
frames from the chosen camera source (webcam or external camera).

2. Pre-processing: Each captured frame undergoes pre-processing to
prepare it for analysis by the Al model. This may involve resizing the frame
to a standard size, normalizing colour variations, and applying image
filtering techniques to enhance the clarity of the cards.

3. Model Prediction: The pre-processed frame is then fed into the Al model.
The model analyzes the frame, comparing it to the patterns and features
learned from the training data. Based on this comparison, the model
predicts the most likely hand combination present in the frame.

4. Result Display: The predicted hand combination is sent to the User
Interface module. This module translates the model's prediction into a
human-readable format, such as text or symbols, and displays it on the
user’s screen. Users can instantly see the identified hand combination in
real-time, aiding their strategic decisions.

6. Hardware and Software Requirements
6.1 Software

Development Environment: Python (version 3.10.0)

Development IDE: Pycharm, Google Collab, Jupyter Notebook

Deep Learning Library: YoloV8, PyTorch, Ultralytics, Hydra-Core

Computer Vision Library: OpenCV, CVZone, TorchVision

MongoDB (Database) Library: PyMongo 4.7.3

Additional Libraries: Matplotlib, Numpy, Pillow, PyYAML, Requests, Scipy,
Torch, Tgdm, Filterpy, Scikit-image, Lap

6.2 Hardware

This document outlines the system requirements for training and running
a neural network on both Windows and macOS. These specifications are
recommended only if you are training and running the model on a local
computer; no server hardware is used.

6.3 Windows System:

e Training:
o Minimum 8GB of RAM
o 6-core CPU (or equivalent processing power)
o NVIDIA GTX GPU (or equivalent dedicated graphics card, RTX
recommended for faster training)
¢ Running:
o Minimum 4GB of RAM
o 4-core CPU
o GPU Recommended (GTX 1650 or higher for faster and smoother
execution)
e Training Time:
o 50 epochs (iterations). 6-8 hours (depending on CUDA GPU
architecture)

6.4 Mac System:

e Training: (Recommended)
o Apple Silicon Chip with 8-core CPU, 10-core GPU (Metal
Architecture), 10-core Neural Engine, and 16GB of Unified Memory
(8GB minimum)
e Training: (Alternative)
o Intel Mac with dedicated Radeon GPU (CUDA compatible) with 8GB
of VRAM

Running:
o 8GB Unified Memory with M1 Chip (Metal Architecture) or 8GB RAM
with Intel i59th Gen (CUDA Architecture)
Training Time:
o 50 epochs (iterations): 8-10 hours (depending on Metal GPU
architecture)

6.5 Resources used during running the model:

GPU: 5% to 15%
CPU: 5% to 8%

6.6 Training IDE and Resources

Google Collab: It's essentially a cloud-based version of Jupyter Notebook.
Instead of installing it on your computer, you access Colab through a web
browser. This means you can work on your project from any device with an
internet connection, and you don't need a powerful computer of your own.
Plus, Colab sometimes offers access to special hardware like GPUs that can
significantly speed up certain tasks. So, while both Colab and Jupyter
Notebook let you combine code and explanations in a single document,
Colab offers the convenience of cloud-based access and potentially more
powerful computing resources.
Google Drive:
o Store & access: Keep your Colab notebooks (like Jupyter notebooks)
and project data in Drive for easy access from anywhere.
o No data juggling: Upload datasets to Drive and use them directly in
Colab, eliminating repetitive downloads.
o Share your work: Save results (graphs, reports) to Drive for effortless
sharing with collaborators.

7. Training Data

The Al model’s success hinges on the training data’s quality and quantity.

This project will require a comprehensive dataset of poker card images labelled
with their corresponding hand combinations. Here are some considerations for
data collection:

Image Variety: The dataset should encompass a wide range of card
combinations, including high cards, pairs, two pairs, three-of-a-kind,
straight flushes, full houses, four-of-a-kind, straight, flush and royal flush.
Image Quality: Images should be clear and well-lit with minimal
background clutter to ensure accurate model training.

e Image Variation: The dataset should include images captured from
different angles and distances to simulate real-world scenarios where
cameras might not be perfectly positioned.

e Data Augmentation Techniques: Techniques like image flipping, rotation,
and colour jittering can artificially expand the dataset and improve the
model's generalisation capabilities. This means the model will be able to
recognize hands even if they appear slightly different from the training
data.

7.1 Training Datasets

Ultralytics is a leader in the field of computer vision, providing
state-of-the-art solutions for object detection and image analysis. Their robust
datasets are a cornerstone for Al and machine learning advancements, offering a
wealth of data to support diverse projects. In my project, | utilized a
comprehensive dataset from Ultralytics consisting of 42,000 images of playing
cards. This dataset is meticulously organized, featuring a datayaml file, 42,000
label files, and 12,000 training files. Such a detailed dataset is invaluable for
training models with high precision and accuracy. By employing this dataset, my
project aims to improve the accuracy and efficiency of algorithms for card
recognition and categorization.

The availability of many images, coupled with precise labels and extensive
training data, enables the development of robust models capable of handling
real-world scenarios. The structure and quality of the dataset significantly
streamline the training process, allowing for the creation of models that are both
accurate and reliable. Ultralytics' datasets are essential for pushing the boundaries
of computer vision technology, and their playing cards dataset is a prime example
of how comprehensive data can drive innovation and improve the performance of
Al applications in practical, real-world contexts.

7.2 Files of Training Datastes

We store our dataset in a designated Google Drive folder to seamlessly
integrate it with our Google Colab Notebook. This centralized storage system
ensures easy access to the dataset directly from the notebook environment,
facilitating efficient data loading and manipulation during model development.
By utilizing Google Drive as our storage solution, we maintain organization and
accessibility, streamlining our workflow for effective collaboration and
experimentation in our projects.

D Playing_Card_Dataset
----------- D data.yaml

. i (The Playing_Card_Dataset is meticulously organised
. (3 images 1010Fies within Google Drive. It consists of categorised
T D labels 1010 Files subfolders: test, train, and valid. Each of these
! subfolders contains both an "images" folder, housing
: the respective images, and a "labels" folder, containing
R D train the corresponding label files. Additionally, the dataset
: ; includes a data.yaml file at the root level, providing
e (3 images 22300 Files essential metadata. This structured approach ensures
e, D labels 22300 Files efficient access and management of the playing card
! data for seamless integration into Al and machine

learning projects.)
D valid

----------- D images 2020 Files
[T D labels 2020 Files

Figure: 7.2 Training Dataset Folder

7.2.1 Data.yaml

The data.yaml file serves as a crucial configuration file, specifying essential
information about the dataset. It defines the paths to the training, validation, and
testing data, facilitating easy access within the code. Additionally, it specifies the
number of classes (nc) and their corresponding names, providing essential
metadata for model training and evaluation. Moreover, the file includes
parameters for integration with external platforms like Roboflow, streamlining
data management and collaboration. Overall, the datayaml file ensures
consistency, clarity, and efficiency in handling the dataset, enhancing the
reproducibility and scalability of the machine learning pipeline.

Data.yaml Code:

path: ../drive/MyDrive/DataSets/Playing_Cards
train: ../train/images

val: ../valid/images

test: ../test/images

nc: 52

names: ['10C', 'ieD', '1@0H', '10S', '2C', '2D', '2H', '2S', '3C', '3D', '3H', '3S',
'4C', '4D', '4H', '4S', '5C', '5D', '5H', '5S8', 'e6C', 'é6D', '6H', '6S', '7C', '7D',
'JH', '7s', 'sCc', 'sD', '8H', '8S', '9C', '9D', 'OH', '9S', 'AC', 'AD', 'AH', 'AS',
IJCI’ IJD‘, |JH|' lel' lKCI, lKD', 'KHI, |KS|’ IQCI’ IQDI’ IQHI’ IQSI]

roboflow:
workspace: augmented-startups
project: playing-cards-ow27d
version: 4
license: Public Domain
url: https://universe.roboflow.com/augmented-startups/playing-cards-ow27d/dataset/4

7.2.2 Test, Train, Valid Folder

The "test" folder is utilized for assessing data accuracy post-training. The
"train" folder houses new data for model training, referencing the test and
validation sets. Lastly, the '"valid" folder serves for data validation purposes,
ensuring the robustness and reliability of the trained models. These folders
collectively support the iterative process of model development and evaluation.

1. Test folder: This folder is essential for evaluating the performance of the
trained YOLO model. It contains a separate set of images that the model
has not seen during training or validation. By testing the model on unseen
data, we can assess its ability to generalize to new scenarios and detect
objects accurately.

2. Train folder: The train folder is where the bulk of the training data resides.
These images are used to train the YOLO model to recognize and localize
objects within the images. The training process involves iterating through
the images multiple times (epochs), and adjusting the model's parameters
to minimize the difference between predicted and ground truth bounding
boxes and classes.

3. Valid folder: Similar to the test folder, the valid folder contains images that
are reserved for validation purposes. During training, a portion of the
training data is set aside for validation to monitor the model's performance
on unseen data and prevent overfitting. The model is periodically evaluated
on the validation set to determine if it is improving or if adjustments to the
training process are necessary.

In summary, the test, train, and valid folders play distinct yet complementary roles
in the training of YOLO models using Ultralytics' algorithms. They collectively
contribute to the iterative process of model development, evaluation, and
refinement, ultimately leading to the creation of accurate and reliable object
detection systems.

7.3 Data Training using Google Collab

We utilize Google Colab for training our data, leveraging its powerful
cloud-based computing resources and collaborative features to streamline the
model training process effectively and efficiently.

7.3.1 Steps to train:

Selecting the runtime engine: In our project, we use Google Colab to train
our models due to its powerful cloud-based computing capabilities and
collaborative environment. To optimize performance, we select a GPU runtime, as
GPUs are designed to handle intensive computational tasks more efficiently than
CPUs. This choice significantly accelerates the data processing and model training
phases.

To configure this, we navigate to the runtime settings in Google Colab and
change the hardware accelerator to a Tesla T4 GPU. The Tesla T4 GPU offers
enhanced computational power, which is crucial for processing large datasets
and performing complex calculations required for training deep learning models.
This setup not only speeds up the training process but also ensures that our
models are trained more effectively, improving their accuracy and performance.

By leveraging Google Colab's GPU resources, we can handle the extensive
computations involved in our project with greater ease and efficiency. This
approach allows us to iterate faster, test different models and parameters, and
ultimately achieve better results in a shorter time frame. The combination of
Google Colab's collaborative features and the computational power of the Tesla T4
GPU makes it an ideal platform for our machine learning and data science tasks.

Code to check if the runtime:

'nvidia-smi

Output:
Thur April 25 13:40:07 2024
+ +
| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |
I + + +
GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M.
MIG M.
0 Tesla T4 off | 00000000:00:04.0 Off 0
N/A 50C P8 ow / 70w OMiB / 15360MiB 0% Default
N/A
+ + +
+ +
Processes:
GPU GI CI PID Type Process name GPU Memory
ID ID Usage

No running processes found

+o——

+ —

e Mounting the Google Drive Folder:

from google.colab import drive
drive.mount('/content/drive')

Importing the Drive Module: The code starts by importing the drive
module from the google.colab package. This module includes functions
specifically designed to handle interactions with Google Drive.

Mounting Google Drive: The drive.mount('/content/drive’) function call
mounts your Google Drive to a specified directory in the Colab
environment, in this case, /fcontent/drive.

Authorization Process: When the function is executed, it prompts the user
to authorize access to their Google Drive. This involves following a provided
link, signing into a Google account, and copying the authorization code
back into the Colab notebook. This step ensures secure access to your files.

Accessing Google Drive Files: After authorization, the contents of your
Google Drive become accessible from within Colab. You can navigate
through directories, read from, and write to files in Google Drive as if they
were part of the local file system in Colab.

Persistent Storage: Mounting Google Drive provides persistent storage,
meaning files stored in Google Drive are retained across different Colab
sessions. This is particularly useful for large datasets and model files that
need to be accessed or saved regularly.

Enhanced Collaboration: By integrating Google Drive, it becomes easier to
share files with collaborators. Shared files in Google Drive are readily
accessible, facilitating seamless collaboration on projects hosted in Colab.

Large Storage Capacity: Google Drive typically offers more storage space
than the local storage available in Colab. This is beneficial for handling large
datasets, storing extensive output files, or maintaining versions of trained
models.

Typical Use Cases: Researchers and developers commonly use this setup
for machine learning and data science projects. It allows for easy access to
training datasets, storage of intermediate results, and saving of final
models. It also supports running experiments that require persistent and
extensive storage solutions.

e Package Installation

The command !pip install ultralytics uses the pip package manager to
install the Ultralytics library. The exclamation mark (!) indicates that this command
is a shell command, not a Python statement, and should be executed in the Colab
environment's terminal.

'pip install ultralytics

10

e Ultralytics Library: Ultralytics is known for developing advanced computer
vision models, particularly the YOLO (You Only Look Once) object detection
algorithms. Installing this package provides access to the latest
implementations and features of these models.

e Functionality: The Ultralytics library includes pre-trained models, tools for
training new models on custom datasets, and utilities for evaluating and
deploying these models. It streamlines the process of setting up and
running object detection tasks.

e Dependencies: The installation command ensures that all necessary
dependencies for Ultralytics are also installed. This includes libraries for
handling image processing, numerical computations, and machine
learning operations.

e Use Cases: Researchers and developers use the Ultralytics library to
leverage state-of-the-art object detection capabilities. It is suitable for
applications ranging from automated surveillance and image analysis to
research in computer vision and deep learning.

¢ Integration with Colab: By installing Ultralytics in Google Colab, users can
take advantage of Colab's computational resources, such as GPUs, to
efficiently train and deploy YOLO models. This integration supports rapid
experimentation and model development.

7.4 Library Import Yolo

The statement from ultralytics import YOLO imports the YOLO class
specifically from the Ultralytics library. This is essential for utilizing the YOLO
object detection models provided by Ultralytics.

from ultralytics import YOLO

YOLO Class: YOLO (You Only Look Once) is a family of real-time object detection
models known for their speed and accuracy. By importing the YOLO class, users
can access these models and their functionalities directly within their Python
environment.

Model Initialization: Once imported, the YOLO class can be used to initialize
pre-trained YOLO models or to set up custom models for training on specific
datasets. This provides flexibility in applying the models to various object
detection tasks.

Functionality: The YOLO class offers methods for training, evaluating, and
predicting objects in images and videos. It encapsulates complex operations into
user-friendly functions, making it easier to implement advanced object detection
workflows.

L

Use Cases: This import is particularly useful for tasks requiring real-time object
detection, such as automated surveillance, autonomous driving, and various
research applications in computer vision.

Integration with Colab: By importing the YOLO class in Google Colab, users can
leverage Colab’s computational resources, such as GPUs, to efficiently train and
deploy YOLO models. This setup supports rapid prototyping and experimentation
with high-performance object detection.

e Check if the Yolo is working

The command is executed in the terminal or shell environment within
Google Colab.

'yolo task=detect mode=predict model=yolov8n.pt conf=0.25
source="https://ww.ultralytics.com/images/bus. jpg'

e YOLO Task: task=detect specifies that the task to be performed is object
detection. This indicates that the model will identify and locate objects
within the provided image.

e Mode of Operation: mode=predict indicates that the model is in prediction
mode. This means the model will use a pre-trained YOLO model to predict
objects in the given image.

e Model Specification: model=yolov8n.pt specifies the pre-trained YOLOV8N
model to be used for the prediction. YOLOvV8n is a lightweight, efficient
version of the YOLOv8 model, designed for faster inference with good
accuracy.

e Confidence Threshold: conf=0.25 sets the confidence threshold to 25%.
This means that the model will only display predictions where it is at least
25% confident that it has correctly identified an object. Lower confidence
detections will be ignored.

e Sourcelmage:source='https.//www.ultralytics.com/images/bus.jpg' specifies
the URL of the image to be processed. The model will download this image
and perform object detection on it.

e Prediction Process: The command initiates the prediction process, where
the specified YOLO model analyzes the image, detects objects, and outputs
the results, typically including bounding boxes and class labels for detected
objects.

e Use Cases: This commmand is useful for quickly applying a pre-trained YOLO
model to a new image, allowing users to see the model's performance and
results without needing to train a model from scratch.

12

Command Execution: The command is executed in the terminal or shell
environment within Google Colab.

'yolo task=detect mode=train model=yolov8n.pt epochs=50 imgsz=640
data=../content/drive/MyDrive/DataSets/Playing_Cards/data.yaml

YOLO Task: task=detect specifies that the task to be performed is object
detection. This indicates that the model will be trained to identify and locate
objects within images.

Mode of Operation: mode=train indicates that the model is in training mode. This
means that the YOLOv8n model specified by model=yolov8n.pt will be trained on
a custom dataset for a specified number of epochs.

Model Specification: model=yolov8n.pt specifies the pre-trained YOLOv8n model
to be used as the starting point for training. This model will be fine-tuned on the
custom dataset to improve its performance on the specific task.

Training Epochs: epochs=50 specifies the number of training epochs. An epoch
refers to one complete pass through the entire training dataset. In this case, the
model will be trained for 50 epochs, allowing it to learn from the dataset multiple
times.

Image Size: imgsz=640 sets the input image size during training to 640x640
pixels. This parameter determines the resolution at which images are processed
by the model during training.

Dataset Specification:

data=../content/drive/MyDrive/DataSets/Playing_Cards/datayaml| specifies the
YAML configuration file containing information about the custom dataset. This file
defines the paths to the training, validation, and testing data, as well as the
number of classes and their corresponding names.

Training Process: The command initiates the training process, during which the
YOLOV8n model is fine-tuned on the custom dataset. The model iteratively
adjusts its parameters to minimize the difference between predicted and ground
truth bounding boxes and class labels.

Output and Progress Monitoring: Throughout the training, the command may
display updates on training progress, including metrics such as loss values,
average precision, and other performance indicators. These metrics help monitor
the model's performance and guide adjustments to training parameters.

13

Checkpoint Saving: Depending on the configuration, the model may periodically
save checkpoints during training. These checkpoints represent snapshots of the
model's parameters at different stages of training and can be used to resume
training or evaluate the model's performance on a separate dataset.

8. MongoDB

MongoDB is a NoSQL database designed for high performance, high
availability, and easy scalability. Unlike traditional relational databases, MongoDB
stores data in flexible, JSON-like documents, making it an ideal choice for
applications requiring dynamic schemas, large-scale data, and real-time analytics.

8.1 Key Features

1. Document-Oriented Storage:

o Dataisstored in BSON (Binary JSON) format.

o Each record called a document, can contain nested structures,
arrays, and various data types, allowing for a rich representation of
data.

2. Schema Flexibility:

o MongoDB allows for dynamic schemas, meaning the structure of
the documents in a collection does not need to be predefined. Fields
can vary from document to document.

3. Scalability:

o MongoDB supports horizontal scaling through sharding, which
distributes data across multiple servers. This makes it possible to
handle large volumes of data and high-traffic loads by distributing
the load across multiple machines.

4. Indexing:

o MongoDB supports a variety of indexing options to improve query
performance. Indexes can be created on any field in a document,
providing efficient ways to search through the data.

5. Replication:

o To ensure high availability and data redundancy, MongoDB uses
replica sets. A replica set is a group of MongoDB instances that
maintain the same data set, providing automatic failover and data
recovery.

6. Aggregation Framework:

o The aggregation framework allows for complex data processing and
transformation operations, such as filtering, grouping, and sorting. It
is used to perform data analytics and aggregation tasks efficiently.

7. Rich Query Language:

o MongoDB provides a powerful query language that supports CRUD
(Create, Read, Update, Delete) operations. It also includes advanced
querying capabilities like geospatial queries and text search.

14

8.2 Data Model

e Database: A container for collections, akin to a schema in relational
databases. Each database has its own set of files on the file system.

e Collection: A group of documents, similar to a table in a relational
database.

e Document: A set of key-value pairs, similar to a row in a relational database.
Documents can contain nested objects and arrays.

8.3 Key Operations

1. CRUD Operations:
o Create: Adding new documents to a collection.
o Read: Retrieving documents based on query criteria.
o Update: Modifying existing documents.
Delete: Removing documents from a collection.
2. Indexing:
o Creating indexes on fields to improve query performance.
o Indexes support efficient execution of queries and can be created on
single or multiple fields.
3. Aggregation:
o Performing complex data transformations and computations.
o Operations like filtering, grouping, and sorting are performed using
aggregation pipelines.
4. Replication:
o Ensuring high availability by maintaining multiple copies of data
across different servers.
o Replica sets enable automatic failover, ensuring that if one server
goes down, another can take its place without data loss.
5. Sharding:
o Distributing data across multiple servers to handle large datasets
and high traffic volumes.
o Sharding partitions the data across shards, which can be spread
across different servers, improving both read and write scalability.

O

8.4 Use Cases

1. Content Management Systems (CMS):
o Flexible schema design is ideal for managing various types of
content without a fixed schema.
2. Real-Time Analytics:
o Fast read and write operations support real-time data analysis and
reporting.
3. Internet of Things (loT):
o Efficiently handles high-velocity data streams from numerous
devices.

15

4. Mobile Applications:
o Synchronization capabilities and offline data storage support mobile
use cases.
5. E-Commerce Platforms:
o Manages complex product catalogues and user data with ease.

8.5 Advantages

e High Performance: Fast read and write operations are optimized for
performance.

e High Availability: Replica sets provide data redundancy and automatic
failover.

e Flexible Schema: Dynamic schema design allows for easy adaptation to
changing data requirements.

e Scalability: Horizontal scaling through sharding supports large-scale
applications.

8.6 Disadvantages

e Complex Transactions: Limited support for multi-document ACID
transactions (though improved in later versions).

¢ Memory Usage: Can be high due to the rich document structure.
Learning Curve: Requires understanding NoSQL paradigms and may be
different from traditional relational databases.

8.7 Installation and Configuration

1. Installation:

o MongoDB can be installed using package managers or by
downloading binaries from the MongoDB website. Installation steps
vary by operating system.

2. Configuration:

o Configurations are managed via a configuration file, typically
mongod.conf. Key parameters include data directory paths, log file
paths and network interfaces.

3. Starting MongoDB:

o MongoDB started as a service, which can be managed using system
service commands. The service will manage data storage and
retrieval operations.

4. Connecting to MongoDB:

o Connections can be made using the MongoDB shell, a
command-line tool, or through MongoDB drivers available for
various programming languages, such as Python, Java, and Node.js.

MongoDB offers a robust, flexible, and scalable solution for modern
application development. Its document-oriented model, combined with powerful

16

querying and indexing capabilities, makes it an excellent choice for a wide range
of applications, from real-time analytics to content management and loT systems.
By leveraging MongoDB's features, developers can build applications that handle
large volumes of data efficiently and adapt to evolving requirements.

9. What is Poker and more about it

Poker is a popular card game that combines skill, strategy, and luck. It
involves betting and individual play, with the winner determined by the ranks and
combinations of their cards. Poker is played in various formats, but the most
common types are Texas Hold'em, Omaha, Seven-Card Stud, and Five-Card Draw.

9.1 Basic Rules of Poker

e Deck: Most poker games use a standard 52-card deck.
Players: Poker can be played with 2 to 10 players.
Objective: The goal is to win chips by either having the best hand at the
showdown or convincing other players to fold their hands.

e Betting Rounds: There are multiple betting rounds in poker. The specific
structure varies by game type but typically includes pre-flop, flop, turn, and
river in community card games like Texas Hold'em and Omaha.

9.2 Betting Structures

e No-Limit: Players can bet any amount of their chips.
e Pot-Limit: Players can bet up to the amount currently in the pot.
e Fixed-Limit: Bets are made in fixed increments.

9.3 Hand Rankings

Poker hands are ranked based on the probability of their occurrence, with
some hands being more valuable than others. Here are the standard poker hand
rankings, from highest to lowest:

1. Royal Flush: A, K, Q, J,10, all of the same suit.
a. Example: Aa Ka Qa Ja 104

2. Straight Flush: Five consecutive cards of the same suit.
a. Example: O& 8% 7& G 54

3. Four of a Kind: Four cards of the same rank.
a. Example: Ae Av Ae Ad 2%

4. Full House: Three cards of one rank and two cards of another rank.
a. Example: Ka Kv K& 3¢ 38

5. Flush: Five cards of the same suit, not in sequence.
a. Example: J& 84 58 38 24

6. Straight: Five consecutive cards of different suits.

17

a. Example: 84 7¢ 6& 5¢ 4%
7. Three of a Kind: Three cards of the same rank.
a. Example: Qa QY Q& 74 44
8. Two Pair: Two cards of one rank and two cards of another rank.
a. Example:Ja Je 5& 5¢ 24
9. One Pair: Two cards of the same rank.
a. Example: 104 10¢ 8& 44 2&
10. High Card: The highest card in the hand when no other hand
combinations are made.
a. Example: A4 104 9% G4 44 (Ace high)

9.4 Common Poker Variants

1. Texas Hold'em: Each player is dealt two private cards, and five community
cards are dealt face up. Players use any combination of their two cards and
the five community cards to make the best five-card hand.

2. Omaha: Similar to Texas Hold'em, but each player is dealt four private
cards, and they must use exactly two of them, along with three of the five
community cards, to make the best five-card hand.

3. Seven-Card Stud: Each player is dealt seven cards, three face down and
four face up. Players use any five of their seven cards to make the best
hand.

4. Five-Card Draw: Each player is dealt five cards, and they have the
opportunity to exchange some or all of their cards for new ones from the
deck to make the best hand.

9.5 Poker Strategy

Poker strategy involves understanding the odds, reading opponents, and
making decisions based on incomplete information. Key elements include:

e Position: Being in a later position (acting after others) is advantageous as
you have more information about their actions.

e Bet Sizing: Adjusting bet sizes based on the strength of your hand and the
tendencies of your opponents.

e Bluffing: Representing a stronger hand than you have to induce your
opponents to fold better hands.

e Pot Odds and Equity: Calculate the odds of completing your hand and
compare them to the odds given by the pot size.

Poker is a complex and engaging game that
combines elements of chance and skill.
Understanding hand rankings, the rules of different
variants, and basic strategies are essential for success.

18

10. Context Flow Diagram

The Poker Hand Recognition System is designed to automate the process
of recognizing poker hands from a live video feed. The system leverages computer
vision and machine learning techniques to process video frames, identify poker
hands, and store and display the results in real time. The following documentation
details the components and workflow of the system, as represented in the
Context Flow Diagram (CFD).

\ .
> Display

Returns the result to
user on Ul

Displays the output on

PokerEye the monitor
Webcam Y

A\ 4

(Al Model)

Captures the video
and uploads it frame
by frame to the model.

Updates the data in the
database to save the

PokerEye N
live progress.

processes
the image

Database

Output (MongoDB)

in
CSV/ISON MongoDB

Data is retrieved from the database and
can be accessed.

N

All the data entries have
been updated in the
database

Figure: 10.1 Context Flow Diagram

10.1 Components and Workflow

1. Webcam
o Function: The webcam captures live video of the poker game.
o Process: It continuously uploads the captured video frame by frame
to the Al model for further processing.
2. PokerEye (Al Model)
o Function: PokerEye is the core Al model responsible for processing
the video frames.
o Process:
m It receives video frames from the webcam.
m Processes each frame to detect and recognize poker hands.
m The processed data includes identifying the cards and
determining the poker hand.
o Output:
m Updates the database with the recognized hand information.
m Sends the result to the user interface for immediate display.

19

3. Database (MongoDB)
o Function: The database is used for storing and retrieving the
processed data.
o Process:
m It receives updates from PokerEye and stores the data entries.
m Enables the retrieval of stored data for future reference and
analysis.
o Output:
m Provides data access for generating output files and for
displaying on the monitor.

4. Display
o Function: The display module presents the results to the user in real
time.

o Process:
m Receives the recognized poker hand results from PokerEye.
m Displays the results on the monitor, providing immediate
feedback to the user.
5. Output in CSV/JSON
o Function: To provide a formatted output of the processed data.
o Process:
m Data is retrieved fromm MongoDB.
m The datais then formatted into CSV or JSON files, which can
be accessed and used for various purposes like reporting,
analysis, or further processing.

10.2 Detailed Process Flow

1. Video Capture and Upload
o The system begins with the webcam capturing the live video feed of
the poker game. The captured video is uploaded to the Al model
frame by frame to ensure continuous processing without lag.
2. Image Processing and Hand Recognition
o Each video frame is processed by PokerEye. This Al model uses
advanced computer vision algorithms to analyze the frames, detect
the poker cards, and recognize the poker hands. The processing
involves multiple steps including image segmentation, card
identification, and hand evaluation.
3. Database Update
o Once the poker hand is recognized, the information is sent to the
MongoDB database. The database is updated with each recognized
hand, ensuring that all data entries are recorded for future use. This
step is crucial for maintaining a comprehensive record of the game.

20

4. Real-Time Display
o Simultaneously, the recognized hand is sent to the display module.
The results are shown on the user interface in real time, allowing the
players and observers to see the identified poker hands instantly.
5. Data Retrieval and Output Generation
o The stored data in MongoDB can be retrieved to generate output
files. These files can be in CSV or JISON format, making the data
accessible and usable for various applications. This feature is
particularly useful for analysis, reporting, and reviewing the game
data.

11. Data Flow Diagram

The Data Flow Diagram (DFD) provides a comprehensive overview of how
the Poker Hand Recognition System operates, detailing the interaction between
various components and modules. Below is a detailed explanation of each
component and the overall workflow:

) Return Output
Model Call PokerEyeDetector.py
PokerEye.plt (Main Function)
(Trained Model) ()
~ - N
; X
= 1) 21
8 c! g &
c =1 3 1
—— 2 2 * !
2 a1 .
H ;
L}
PokerEye : | PokerHandFunction.
Webcam > Y J : [il
(Al Project File) \ % :
Captures the video
and uploads it frame
by frame to the model. MongoDBTest.py
PokerEye
the image

processes ~
.
L}
L}
.
.
.
Check For Duplicate '
.

Update Method

MongoDB

Z
(DataBase) S
MongoDB
Data is updated to the database
without duplicate entries.

Figure: 11.1 Data Flow Diagram

21

1.1 Components and Workflow

1. Webcam

o Function: The webcam captures live video of the poker game.
o Process: It continuously uploads the captured video frame by frame
to the Al model for further processing.
2. PokerEye (Al Project File)
o Function: Acts as the central processing unit for the system,
handling the primary image processing tasks.
o Process:
m Receives video frames from the webcam.
m Utilizes the trained model (PokerEye.plt) to process each
frame, identifying the poker cards and hands.
m Calls various functions and modules to complete specific tasks
in the recognition process.
3. PokerEye.plt (Trained Model)
o Function: The trained machine learning model is used to detect and
recognize poker hands from video frames.
o Process:
m Called by PokerEye (Al Project File) for model inference.
m Processes the input frames and returns the recognized poker
hands.
4. PokerEyeDetector.py (Main Function)
o Function: Serves as the main control script that orchestrates the
workflow.
o Process:
m Calls the trained model (PokerEye.plt) to perform hand
recognition.
m Interacts with other scripts like PokerHandFunction.py and
MongoDBTest.py to handle various tasks.
m Returns the output results after processing.
5. PokerHandFunction.py

o Function: Contains specific functions related to poker hand
recognition.

o Process:
m Called by PokerEyeDetector.py to perform detailed hand
analysis.

m Returns results of hand recognition to the main function.
6. MongoDBTest.py

o Function: Handles database interactions, particularly with MongoDB.
o Process:

m Called by PokerEyeDetector.py to check for duplicates and
update the database.

m Ensures that data is stored without duplicates, maintaining
data integrity.

22

m Returns confirmation of database updates.
7. MongoDB (Database)

o Function: Stores the processed data from the Al model.

o Process:
m Receives data updates from MongoDBTest.py.
m Stores recognized hand data and ensure no duplicate entries

are recorded.

m Data can be retrieved for further use or analysis.

11.2 Detailed Process Flow

1. Video Capture and Upload

o The process starts with the webcam capturing the live video feed.
This video is uploaded frame by frame to the PokerEye (Al Project
File) for continuous processing.

2. Image Processing and Hand Recognition

o PokerEye (Al Project File) receives each frame and processes it using
the trained model (PokerEye.plt). This model detects and recognizes
the poker hands within each frame.

o The recognition results are then handled by PokerEyeDetector.py,
which manages the overall workflow and integrates various function
calls.

3. Function Calls and Integration
o PokerkyeDetector.py coordinates the recognition process by calling:
m PokerEye.plt for model inference.
m PokerHandFunction.py for detailed hand analysis.
m MongoDBTest.py for database operations, ensuring data
integrity.
4. Database Operations

o MongoDBTest.py interacts with MongoDB to check for duplicate
entries and update the database with new recognized hand data.

o MongoDB ensures all data entries are unique and stores them for
future retrieval.

5. Return Output

o Once the database is updated and hand recognition is completed,
PokerkEyeDetector.py returns the output results.

o These results can be displayed on a user interface or used for further
analysis and reporting.

The Poker Hand Recognition System is a sophisticated integration of
various components, each playing a crucial role in the overall functionality. The
webcam captures the live game, the Al project file and trained model handle the
recognition tasks, and the database ensures data integrity and storage. The
well-coordinated function calls and integration ensure a seamless operation,
making the system effective in real-time poker hand recognition. This detailed

23

workflow ensures accuracy,

efficiency,

and reliability in

processing poker hands from live video feeds.

11.3 Detailed Analysis of the Code and Algorithm

11.3.1 PokerEyeDetector.py (Main Function)

from ultralytics import YOLO
import cv2

import cvzone

import math

import PokerHandFunction
import MongoDBTest

from datetime import datetime

cap = cv2.VideoCapture(0)
cap.set(propId=3, value=1280)
cap.set(propId=4, value=720)

model = YOLO("../Yolo-Weights/playingCards.pt")

classNames = [

'10C', '1eD', '10H', '10S',
‘2¢', '2D', '2H', '2S',
"'3¢', '3D', '3H', '3S',
"4C', '4D', '4H', '4S',
'‘s5c', 'sb', '5GH', '5S',
‘6C', '6D', '6H', '6S',
'7C', '7D', '7H', '7S',
'8C', '8D', '8H', '8S',
'9C', '9D', '9H', '9S',
'AC', 'AD', 'AH', 'AS',
‘jc', 'ip', 'JH', '3Ss',
'KC', 'KD', 'KH', 'KS',
'qc’, 'ap’, oH', ‘@S’

pokerHandRanks = {

10: "Royal Flush", 9: "Straight Flush", 8: "Four of a Kind", 7: "Full House",

6: "Flush", 5:
2: "Pair", 1: "High"

}

"Straight", 4: "Three of a Kind", 3:

"Two Pair",

reversedPokerHandRanks = {value: key for key, value in pokerHandRanks.items()}

while True:
success, img = cap.read()
resluts = model(img, stream=True)
hand = []

cvzone.putTextRect(img, 'Poker Eye', (25, 60), scale=1.3, thickness=2,

colorT=(31, 18, 71), colorR=(201, 233, 107), font=cv2.FONT_HERSHEY_PLAIN)
cvzone.putTextRect(img, "Product of Aydie's Avenue", (22, 95), scale=0.8, thickness=1,

colorT=(31, 18, 71), colorR=(201, 233, 107), font=cv2.FONT_HERSHEY_PLAIN, offset=7)
cvzone.putTextRect(img, 'visit: aydie.in/projects', (600, 700), scale=0.8, thickness=1,

colorT=(31, 18, 71), colorR=(201, 233, 107), font=cv2.FONT_HERSHEY_PLAIN, offset=6)

for r in resluts:
boxes = r.boxes
for box in boxes:

x1, y1, x2, y2 = map(int, box.xyxy[0])

w, h = x2 - x1, y2 - y1

cvzone.cornerRect(img, bbox=(x1, y1, w, h))

conf = math.ceil(box.conf[0] * 100) / 100

cls = int(box.cls[0])

cvzone.putTextRect(img, f'{classNames[cls]} {conf}', (max(@, x1), max(35, y1)), scale=1.2,
thickness=2, colorT=(31, 18, 71), colorR=(201, 233, 117), font=cv2.FONT_HERSHEY_PLAIN)

recognizing and

24

if conf > 0.8:
hand.append(classNames[cls])

hand = list(set(hand))
print("Card Detected = ", hand)

if len(hand) = 5:

resluts = PokerHandFunction.findPokerHand(hand)
print("Combination Detected = ", resluts)

time_ = datetime.now().strftime('%H:%M"')
dbresult_ = MongoDBTest.mongoDataBaseUpdater(
str(resluts), str(hand), reversedPokerHandRanks[str(resluts)], time_

)
print("MongoDB Feedback = ", dbresult_, "\n\n")

cvzone.putTextRect(img, f'Your Hand is {resluts}, Rank score is

{reversedPokerHandRanks[str(resluts)]}', (475, 60), scale=1.5, thickness=2, colorT=(31, 18, 71),
colorR=(201, 233, 107), font=cv2.FONT_HERSHEY_PLAIN)

cvzone.putTextRect(img, f'Combination — {str(hand)}', (475, 100), scale=1, thickness=2,
colorT=(31, 18, 71), colorR=(201, 233, 107), font=cv2.FONT_HERSHEY_PLAIN)

cv2.imshow("Image", img)
cv2.waitKey(1)

11.3.1.1 Code Summary

1.

Import Libraries:

o The code starts by importing several libraries necessary for its
functionality, including YOLO for object detection, OpenCV for image
processing, and others for handling poker hands and database
operations.

Setup Camera:

o The camera is set up using OpenCV to capture video. The resolution

is set to 1280x720 pixels.
Load YOLO Model:

o The YOLO model, which is pre-trained to detect playing cards, is

loaded.
Class Names:

o Alist of class names is created, representing all the playing cards

(e.g., "10C' for 10 of Clubs, 'AH' for Ace of Hearts).
Poker Hand Ranks:

o Two dictionaries are defined to map poker hand ranks to their

names (e.g., "Royal Flush") and vice versa.
Main Loop:

o The main loop continuously captures frames from the camera and

processes them.
Process Frame:

o Each captured frame is processed by the YOLO model to detect
playing cards.

o Detected cards are stored in a list called hand.

Display Branding:

o Some text is displayed on the frame for branding purposes (e.g.,

"Poker Eye", "Product of Aydie's Avenue").

25

9. Draw Bounding Boxes:
o For each detected card, a bounding box is drawn around it on the
frame.
o The confidence level and class name of the detected card are also
displayed.
10. Check for Poker Hand:
o If exactly five cards are detected, the poker hand is determined using
a function from the PokerHandFunction module.
o Theresultis printed and displayed on the frame.
1. Update Database:
o The detected poker hand and its details are updated in a MongoDB
database using the MongoDBTestmodule.
12. Display Results:
o The result of the poker hand detection and its rank are displayed on
the frame.
13. Show Frame:
o The processed frame is displayed in a window.
o The loop continues, capturing and processing new frames until the
program is stopped.

In summary, this code captures video from a webcam, detects playing

cards in real-time, identifies poker hands, updates a database with the results,
and displays the processed video with annotations on the screen.

11.3.2 PokerHandFunction.py

def findPokerHand(hand):

ranks [1]
suits []
possibleRanks = []

for card in hand:
if len(card) = 2:
rank = card[0]
suit = card[1]
else:
rank = card[0:2]

suit = card[2]

if rank = "A":
rank = 14

if rank = "K":
rank = 13

if rank = "Q":
rank = 12

if rank = "J":
rank = 11

ranks.append(int(rank))
suits.append(suit)

sortedRanks = sorted(ranks)

26

Royal Flush & Straight Flush & Flush
if suits.count(suits[0]) = 5:
Royal FLush
if 14 in sortedRanks and 13 in sortedRanks and 12 in sortedRanks and 11 in sortedRanks and 10 in
sortedRanks:
possibleRanks.append(10)

Straight Flush
elif all(sortedRanks[i] = sortedRanks[i - 1] + 1 for i in range(1, len(sortedRanks)))
possibleRanks.append(9)

Flush
else:
possibleRanks.append(6)

Straight

10 11 12 13 14

11 = 10+1 True

elif all(sortedRanks[i] = sortedRanks[i - 1] + 1 for i in range(1, len(sortedRanks))):
possibleRanks.append(5)

handUniquevals = list(set(sortedRanks))

#Four of a kind and Full House
#3 333 5 — set — 3 5 — Four of a kind — if 3 = 4
#3 3355 — set — 3 5 — Full house — if 3 = 3
if len(handUniqueVals) = 2:
for val in handUniquevals:
if sortedRanks.count(val) = 4: #Four of a kind
possibleRanks.append(8)

elif sortedRanks.count(val) = 3: #Full house
possibleRanks.append(7)

#Three of a kind and two pairs
#5556 7 — set — 56 7 —> Three of a kind
#5566 7 — set — 56 7 — Two pair
if len(handUniquevals) = 3:
for val in handUniquevals:

if sortedRanks.count(val) = 3: #three of a kind
possibleRanks.append(4)
elif sortedRanks.count(val) = 2: #two pair

possibleRanks.append(3)

#Pair
#4 4 56 7 — set — 4 56 7 — 4 Unique — Pair
if len(handUniqueVals) = 4:

possibleRanks.append(2)

if not possibleRanks:
possibleRanks.append(1)

#print(max(possibleRanks))

pokerHandRanks = {10:"Royal Flush", 9:"Straight Flush", 8:"Four of a Kind", 7:"Full House", 6:"Flush",
5:"Straight", 4:"Three of a Kind", 3:"Two Pair", 2:"Pair", 1:"High"}

output = pokerHandRanks[max(possibleRanks)]

print(hand,output,"\n")

return output

27

#Demo Data

if __name__ = '__main__"':
findPokerHand(["AH", "KH", "QH", "JH", "1@H"]) # Royal Flush
findPokerHand(["QC", "JC", "1oC", "9C", "8C"]) # Straight Flush
findPokerHand(["5H", "5S", "5D", "5C", "QH"]) # Four of a Kind
findPokerHand(["2H", "2S", "2D", "10C", "10H"]) # Full House
findPokerHand(["KH", "7H", "6H", "1@QH", "2H"]) # Flush
findPokerHand(["10H", "9C", "8D", "7S", "6H"]) # Straight
findPokerHand(["7H", "7D", "7S", "QS", "3H"]) # Three of a kind
findPokerHand(["JH", "JS", "5D", "5S", "7H"]1) # Two Pair
findPokerHand(["AH", "AC", "KD", "JH", "7S"1) # Pair
findPokerHand(["KH", "8S", "3D", "10C", "2H"]) # High Card

11.3.2.1 Code Summary

1. Initialization:
o Three empty lists ranks, suits, and possibleRanks are created to store
the ranks, suits, and possible ranks of the poker hand, respectively.

2. Processing Cards:
o The function loops through each card in the hand.
o It determines the rank and suit of each card and converts them into
numerical values if necessary.
o The ranks and suits of the cards are stored in the respective lists.
3. Sorting Ranks:
o Theranks are sorted in ascending order.
4. Check for Flushes:
o Ifall the cards have the same suit, it checks for a Royal Flush, Straight
Flush, or simply a Flush.
5. Check for Straights:
o Ifthe ranks form a sequence, it checks for a Straight.
6. Check for Four of a Kind and Full House:
o If there are only two unique ranks, it checks for Four of a Kind or a
Full House.
7. Check for Three of a Kind and Two Pairs:
o Ifthere are three unique ranks, it checks for Three of a Kind or Two
Pairs.
8. Check for a Pair:
o Ifthere are four unique ranks, it checks for a Pair.
9. Determining the Poker Hand:
o If no specific hand is detected, it defaults to a "High Card".
10. Output:
o The detected poker hand is printed and returned as output.
1. Demo Data:
o The function is called with demo data representing various poker
hand combinations, and the results are printed.

28

This function essentially analyzes the input hand of playing cards and
determines the best poker hand combination that can be formed from them.

11.3.3 MongoDBTest.py

from pymongo import MongoClient, errors
from datetime import datetime

client = MongoClient('mongodb://localhost:27017/")
db = client['PokerEyeTest']
collection = db['PokerEyeTestData']
collection.create_index([("Hand", 1), ("Combinations", 1)], unique=True)
def mongoDataBaseUpdater(Hand, Combinations, Score, Time):

latest = collection.find_one(sort=[('_id', -1)]1)

if latest is None:

latest_id = 1

else:
latest_id = latest['_id'] + 1

data = {
'_id': latest_id,
'Hand': Hand,

'Combinations': Combinations,
'Score': Score,
'Time': Time

}

try:
collection.insert_one(data)
return f"New Inserted record......
except errors.DuplicateKeyError:
return f"Duplicate Record Found......
result = collection.update_one({'Hand': Hand, 'Combinations': Combinations},
{"$set': {'Score': Score, 'Time': Time}})

if result.matched_count:
return f"0ld Record Updated...... \n"
else:
return f"Update Failed\n\n"
except Exception as e:
return f"An error occurred: {el}l"

11.3.3.1 Code Summary

1. Import Libraries:
o The pymongo library is imported to interact with MongoDB, and
datetime is imported to handle timestamps.
2. Initialize MongoDB Client and Collection:
o A MongoDB client is initialized to connect to the local MongoDB
server (localhost:27017).
o A database named 'PokerEyeTest' and a collection named
'PokerEyeTestData' are created.
o Aunique index is created on the fields 'Hand' and 'Combinations".
This ensures that each document in the collection is unique based
on these fields.

29

3. Define mongoDataBaseUpdater Function:
o This function takes four parameters: Hand, Combinations, Score, and
Time.
o It retrieves the latest document from the collection to determine the
_id for the new document.
It creates a new document with the provided data.
It attempts to insert the new document into the collection.

m If a duplicate key error occurs, it means a document with the
same 'Hand' and 'Combinations’ exists. In this case, it updates
the existing document with the new Score and Time.

m Ifany other error occurs during insertion, it catches the
exception and returns an error message.

o It returns a success or error message indicating the outcome of the
operation.

4, Demo Data:

o This section demonstrates how to use the mongoDataBaseUpdater
function by calling it with sample data representing various poker
hand combinations.

5. Close MongoDB Client:

o The MongoDB client is not closed in this script. If you want to close
the client connection after use, you can uncomment the
client.close() line.

Overall, this script sets up a MongoDB database and provides a function to
update it with poker hand data, ensuring uniqueness based on the hand and
combination.

11.4 Running the Model

11.4.1 Step 1: Run the MongoDB Server using Terminal

% sudo mongod --dbpath=/Volumes/AydieT7/PokerEye_V24.2.0/Database/pkdb1l

This command is executed in a Unix-like environment, such as Linux or
macOS, and it starts the MongoDB server (mongod). Let's break down the
command:

e % sudo: The % sign at the beginning might indicate that this command is
executed in a Jupyter Notebook or IPython environment. sudo is a

30

command used in Unix-like operating systems to run programs with
elevated privileges, typically as the superuser or root.

e mongod: This is the MongoDB server daemon. It's the primary process for
the MongoDB database system. Running this command starts the
MongoDB server.

e --dbpath=/Volumes/AydieT7/PokerEye_V24.2.0/Database/pkdb]l: This
option specifies the path to the MongoDB database files. In this case, it's
set to /Volumes/AydieT7/PokerEye_V24.2.0/Database/pkdbl. This
directory contains the database files for the MongoDB server. It's where
MongoDB will store its data.

To sum up, this command starts the MongoDB server (mongod) with
elevated privileges (sudo) and specifies the location of the database files using
the --dbpath option.

11.4.2 Step 2: Open MongoDB Compass

MongoDB Compass - 27017/ okerl Data

M PokerEyeTestData x +
0 localhost:27017
7017 > PokerEyeT Dat

Documents 0 Aggregations Schema Indexes (1 Validation

& Databas: S + N
e o~ Generate query + Explain m o
© ADD DATA ~ EXPORT DATA UPDATE DELETE 0-0of0 < {} 1 8
+ 8 PokerkyeTest [=)
) M PokerEyeTestData

» € admin
» & config

-
» & demo 1 h

p—

» & local — 1

[

This collection has no data
It only takes a few seconds to import data from a JSON or CSV
file.

>_MONGOSH

11.4.3 Step 3: Run The main function using PyCharm IDE

11.4.4 Step 4: Update the database by showing the card combination to the
camera

31

O~

© ADDDATA ~

_id: 1

Generate query 4,

EXPORT DATA UPDATE

Hand : "Straight"
Combinations : "['8S', '7H', '10C', '6S', '9p']"

Score : 5

Time : "21:34"

_id: 2

Hand : "Royal Flush"
Combinations : "['AD', 'KD', ' ', 'JD', '1eD']"

Score : 10

Time : "21:34"

_id: 3

Hand : "Pair"
Combinations : "['8D', '4H', '4C', '5D', '3D']"

Score : 2

Time : "21:35"

_id: 4

Hand : "Three o

Combinations : "['3C'

Score : 4

Time : "21:35"

DELETE

MogogDB Data Base Table

Combinations

Explain

Options »

=]

1 High Card [‘KH’,*‘8C’,‘QD’,‘2S’,‘7H"] 1 15:35
2 Pair [‘AH’,‘AC’,’KD’,’3S’,’7H"] 2 15:40
3 Two Pair [‘JH’,’3C’,’5D’','55",'7H"] 3 15:42
4 Three of a Kind [‘7H’,’7D’,’7C’,’'QS’, '3H’] 4 15:55
5 Straight [‘10’,’9C’,’8D’,'7S’, 6H'] 5 15:57
6 Flush [‘kc’,’10C’,’'9C’,’6C’,"5C"] 6 16:01
7 Full House [‘AH’,’AC’,’AD’,’3S’,’3D"] 7 16:05
8 Four of a Kind [‘2s’,’2D','2H’,'2C", 'AH’] 8 16:07
9 Straight Flush [‘3c’,’10C’,’9C’,’'8C",'7C"] 9 16:11
10 Royal Flush [‘AH’,'KH’,’QH’,’JH’, 10H'] 10 16:15

12. Scope of the Solution

Scope of the Solution The project's primary objective lies in the meticulous
recognition of standard five-card poker hand combinations, a task requiring
intricate algorithmic processing and pattern recognition. Moreover, it
encompasses a spectrum of functionalities, delving into the granular details of
card identification, including the precise recognition of individual card ranks and
meticulous suit discernment. This comprehensive approach ensures a thorough
understanding and interpretation of each hand's composition, facilitating

accurate assessment and strategic decision-making in poker gameplay.

32

Furthermore, it is imperative to underscore the ethical framework within
which this system operates. Designed with a dual purpose, it serves the realms of
personal exploration and educational enlightenment. As a tool crafted for
personal use, it empowers individuals to delve into the nuances of poker hand
analysis, enhancing their understanding and proficiency in the game.
Simultaneously, it functions as an educational resource, fostering learning and
skill development in the domain of poker hand recognition.

However, it is paramount to emphasize the ethical imperative ingrained
within the system's design. It unequivocally prohibits exploitation for undue
advantage in online poker settings, echoing the principles of fair play and
integrity upheld within the gaming community. Any attempt to deploy this
system for such purposes contravenes not only ethical standards but also gaming
regulations, underscoring the importance of responsible utilization and
adherence to established guidelines.

In essence, the scope of this solution transcends mere technical prowess; it
embodies a commitment to ethical integrity and educational empowerment,
serving as a beacon for responsible innovation in the realm of gaming technology.

13. Work Plan and Timeline

The meticulous planning and execution of the project's development are
paramount to its success. Therefore, the work plan and timeline are structured
into discrete phases, each meticulously crafted to ensure efficiency and efficacy.

e Phase 1: Data Collection and Preparation (1-2 weeks): This foundational
phase sets the stage for subsequent activities by acquiring and preparing
the requisite data. It involves a multifaceted approach:

Gathering poker card images from diverse sources: Scouring various
repositories, databases, and online platforms to amass a comprehensive
collection of high-quality poker card images.

Labeling images with their corresponding hand combinations:
Engaging in manual or automated labelling processes to annotate each
image with the specific poker hand it represents, facilitating supervised
learning during model training.

Pre-processing and organizing the dataset for training: Employing
data preprocessing techniques such as normalization, resizing, and
augmentation to enhance the quality and diversity of the dataset.
Additionally, organizing the dataset into appropriate training, validation,
and testing subsets to ensure robust model training and evaluation.

33

Phase 2: Model Training (2-3 Days):

With the dataset meticulously curated and prepared, the focus shifts
to the development and refinement of the Al model architecture:

Defining and building the Al model architecture using Yolo and
OpenCV: Leveraging state-of-the-art deep learning frameworks and
computer vision libraries to construct a robust and versatile model capable
of accurately recognizing poker hand combinations.

Training the model on the prepared dataset using Google Colab for
faster processing: Harnessing the computational resources and
collaborative capabilities of Google Colab to expedite the model training
process, thereby accelerating iterations and optimizations.

Monitoring model performance and adjusting hyperparameters
(learning rate, optimizer) for optimal results: Iteratively fine-tuning model
hyperparameters and monitoring performance metrics to enhance
accuracy, convergence speed, and generalization capabilities.

Phase 3: System Integration and Testing (1-2 Days):

With the trained model in hand, the focus shifts to integrating it into
a cohesive system and rigorously testing its functionality:

Integrating the trained model with the video capture and user
interface modules: Seamlessly integrating the model into a unified software
architecture, ensuring compatibility and interoperability with the video
capture hardware and user interface components.

Testing the system functionality with various hand combinations
and camera setups: Conducting comprehensive testing scenarios to
validate the system's ability to accurately recognize diverse poker hand
combinations under varying environmental conditions, camera angles, and
lighting conditions.

Debugging and refining the system to ensure accuracy and
performance: Iteratively identifying and resolving software bugs,
performance bottlenecks, and edge cases to enhance the system's
reliability, robustness, and user experience.

Phase 4: User Interface Development (2 Days):

The final phase encompasses the design and implementation of a
user-friendly interface to facilitate intuitive interaction with the system:

Designing a user-friendly interface for displaying the identified hand
combination in real-time: Collaborating with UX/Ul designers to craft an

34

aesthetically pleasing and intuitive user interface that conveys relevant
information effectively and efficiently.

Implementing the interface using chosen libraries or frameworks:

Leveraging frontend development technologies such as HTML, CSS,
JavaScript, and relevant Ul frameworks to translate the design mockups
into functional user interfaces seamlessly.

Conducting user testing to gather feedback and improve the user

experience: Soliciting feedback from end-users through usability testing
sessions, surveys, and feedback forms to identify pain points, preferences,
and opportunities for refinement, iteration, and enhancement.

In summary, the work plan and timeline delineate a structured and
iterative approach to project development, encompassing data collection, model
training, system integration, and user interface design. By adhering to this
systematic methodology, the project endeavors to achieve its objectives
effectively while ensuring the delivery of a robust, reliable, and user-friendly poker
hand recognition system.

14. Expected Outcomes

The project aims to deliver a comprehensive and innovative

Al-driven solution for recognizing poker hand combinations. The expected
outcomes encompass the following key aspects:

1. 14.1 A Functional and User-Friendly Al System:

o

Real-Time Poker Hand Recognition: The core functionality of the
system is its ability to accurately recognize standard poker hand
combinations from a live video stream. This involves the seamless
integration of advanced computer vision techniques and deep
learning models, ensuring the system can identify and classify hand
combinations in real-time with high precision.

High Accuracy: Leveraging state-of-the-art models and extensive
training data, the system is expected to achieve high accuracy rates
in recognizing various poker hands. This entails correctly identifying
hands such as pairs, flushes, straights, and full houses, even in
diverse and challenging environmental conditions.

User-Friendly Interface: The system is designed with a focus on user
experience. A clean, intuitive interface will display the identified
poker hand combinations in real-time, providing users with
immediate and clear feedback. The interface will be accessible and
straightforward, ensuring ease of use for individuals with varying
levels of technical expertise.

35

2. 14.2 Efficiency in Hand Identification:

o

Reduced Time and Effort: By automating the process of hand
identification, the system significantly reduces the time and effort
required to determine poker hand combinations. Players no longer
need to manually assess their hands, allowing for a more
streamlined and efficient gameplay experience.

Focus on Strategy: With the burden of hand identification lifted,
players can redirect their focus towards strategic decision-making.
This enhanced focus can lead to improved gameplay, as players can
concentrate on their overall strategy, opponent analysis, and
in-game tactics without being distracted by the need to verify their
hands manually.

3. 14.3 Educational Value:

(¢]

Learning Tool: The system serves as a valuable educational resource
for individuals looking to learn and practice poker hand recognition
techniques. By providing instant feedback on hand combinations,
users can gain a deeper understanding of poker hands, improving
their recognition skills over time.

Interactive Practice: Users can engage in interactive practice
sessions, using the system to test their ability to identify poker hands
in real-time scenarios. This hands-on learning approach can
accelerate skill development and enhance users' confidence in their
poker hand recognition abilities.

Enhanced Comprehension: The system's detailed feedback can
help users understand the nuances of poker hand rankings and
probabilities. Educational modules or tutorials integrated within the
system can further elucidate concepts such as hand strength, odds
calculation, and strategic play based on hand recognition.

4. 14.4 Additional Anticipated Benefits:

o

Accessibility: The system's design ensures it is accessible to a broad
audience, including novice players, enthusiasts, and educators. The
intuitive interface and comprehensive educational resources make it
an invaluable tool for anyone interested in mastering poker hand
recognition.

Versatility: While primarily focused on standard five-card poker
hand combinations, the system's underlying architecture can be
adapted for other poker variations, such as Texas Hold'em or Omaha,
broadening its applicability and utility.

Community Engagement: By fostering a deeper understanding and
appreciation of poker through advanced technology, the system can
engage and inspire the poker community. It can serve as a catalyst
for discussions, workshops, and collaborative learning opportunities
centered around poker strategy and Al applications in gaming.

36

In conclusion, the expected outcomes of this project extend beyond the
creation of a highly accurate and efficient Al system for poker hand recognition. It
aims to transform the way players interact with and learn about poker, providing a
robust, user-friendly, and educational tool that enhances both gameplay and
strategic understanding.

To ensure the effectiveness and reliability of the developed poker hand
recognition system, a rigorous and comprehensive evaluation and testing process
will be implemented. This multifaceted approach is designed to assess the
system's performance, usability, and robustness across a variety of conditions and
user interactions.

15. Accuracy Testing

1. 15.1 Testing Dataset Evaluation:

o

Objective Assessment: The model's performance will be evaluated
using a separate testing dataset that was not included in the
training process. This ensures an unbiased and objective assessment
of the model's ability to generalize to unseen data.

Metrics Utilized: Key performmance metrics such as accuracy,
precision, recall, and Fl-score will be used to evaluate the model's
proficiency in correctly identifying different poker hand
combinations.

m Accuracy: Measures the proportion of correctly identified
hands out of the total hands.

m Precision: Evaluates the ratio of correctly identified positive
observations (e.g., a specific hand type) to the total identified
positive observations.

m Recall: Assesses the ratio of correctly identified positive
observations to all actual positive observations in the dataset.

m F1-Score: Provides a balance between precision and recall,
offering a single metric that considers both false positives and
false negatives.

Confusion Matrix: A confusion matrix will be generated to provide
detailed insights into the model's performance across different hand
combinations, highlighting areas where misclassifications are more
likely to occur.

2. 15.2 User Interaction and Feedback:

o

Diverse User Group: The system will be tested with a group of
potential users, including novice players, experienced poker
enthusiasts, and educators. This diverse group will provide
comprehensive feedback on the system's usability and effectiveness.

37

o Usability Testing: Participants will use the system in realistic
scenarios to identify any challenges or obstacles they face when
interacting with the system.

m Task Completion Time: Measuring the time users take to
complete specific tasks, such as identifying a poker hand.

m Ease of Use: Collecting subjective feedback on the ease of use
and intuitiveness of the interface.

m User Satisfaction: Gathering overall satisfaction scores and
comments regarding the user experience.

o Feedback Collection: Detailed surveys, interviews, and observation
sessions will be conducted to gather qualitative and quantitative
feedback.

m User Challenges: Identifying any difficulties or pain points
users encounter.

m Suggestions for Improvement: Soliciting user suggestions
for enhancing the user interface and overall experience.

o Iterative Refinement: Based on user feedback, iterative
improvements will be made to the system to enhance usability and
user satisfaction.

3. 15.3 Stress Testing (Robustness and Reliability Assessment):

o Simulated Environmental Conditions: The system will be subjected
to a variety of simulated environmental conditions to evaluate its
robustness and reliability.

m Different Lighting Scenarios: Testing the system's
performance under varying lighting conditions, including low
light, bright light, and fluctuating lighting environments.

m Varied Camera Angles: Assessing the system's accuracy
when the camera is positioned at different angles relative to
the poker table and cards.

m Card Positioning Variations: Evaluating the system's ability to
correctly identify hand combinations when cards are placed in
unconventional or skewed positions.

o Stress Testing Scenarios:

m Rapid Movements: Introducing rapid movements of cards or
players' hands to test the system's responsiveness and
accuracy in dynamic environments.

m Background Noise: Adding visual noise or clutter in the
background to assess the system's capability to maintain
accuracy in less controlled settings.

o Performance Monitoring: Continuously monitoring the system's
performance under these conditions to identify any degradation in
accuracy or responsiveness.

m Error Rates: Tracking the frequency and nature of errors
under different stress conditions.

38

m System Stability: Ensuring the system remains stable and
does not crash or produce significant delays during testing.

In conclusion, the evaluation and testing process is designed to thoroughly
assess the poker hand recognition system's accuracy, usability, and robustness. By
employing a combination of accuracy testing, user testing, and stress testing, the
project aims to deliver a reliable, user-friendly, and high-performance system that
meets the needs of its diverse user base and performs consistently in real-world
conditions.

16. Limitations

While this project provides a significant advancement in poker hand
recognition technology, several Ilimitations must be acknowledged.
Understanding these constraints is essential for setting realistic expectations and
guiding future development efforts.

16.1 Limited Hand Recognition

1. Focus on Standard Combinations:

o The current system is specifically designed to recognize standard
seven-card poker hand combinations. While this encompasses the
majority of commonly encountered hands, it does not account for
the unique variations and complexities found in other popular forms
of poker.

2. Exclusion of Other Poker Variants:

o Texas Hold'em: This widely played variation involves a different card
distribution and community cards that the system is not currently
equipped to handle. Recognizing hands in Texas Hold'em requires
the system to interpret combinations from two personal cards and
five community cards.

o Omaha: In Omaha, players receive four personal cards and use two
of them in conjunction with three of the five community cards to
form a hand. This additional complexity is not addressed by the
current model.

3. Future Expansion Potential:

o Future iterations of the system could be expanded to include these
and other poker variations. This would involve additional training on
specific datasets representing the unique rules and hand
combinations of each poker variant.

16.2 Individual Card Recognition

1. Current Scope Limitations:
o The project does not currently include functionalities for recognizing
individual card ranks (e.g., Ace, King, Queen) or suits (e.g., hearts,

39

clubs). The focus has been on recognizing hand combinations rather
than individual cards.

2. Implications for Analysis:

o

A more granular level of recognition, such as identifying each card's
rank and suit, could enhance the system's utility, providing detailed
analysis and broader applicability. For instance, it could be used for

more comprehensive game analysis, including strategies based on

specific card distributions.

3. Future Development:

o

Future development could incorporate these functionalities,
allowing the system to perform detailed card recognition and
thereby support a wider range of analytical and educational
purposes.

16.3 Ethical Considerations

1. Intended Use:

O

As emphasized throughout the project, the system is intended
strictly for personal use and educational purposes. It is designed to
aid in learning and practicing poker hand recognition, rather than to
be used in competitive or real-money gaming environments.

2. Potential for Misuse:

o

There is an inherent risk that such a system could be misused to
gain unfair advantages in online poker games, which is explicitly
prohibited by most gaming platforms and can result in significant
penalties for users.

3. Responsible Development:

o

Future work should prioritize ethical considerations, ensuring that
the system adheres to all relevant regulations and guidelines. This
includes implementing safeguards to prevent misuse and actively
discouraging any attempts to use the system in ways that violate
online poker regulations.

16.4 Additional Limitations

1. Dependence on Hardware:

o

The accuracy and performance of the system may be influenced by
the quality of the video capture hardware and the environmental
conditions during use. Variations in camera resolution, lighting, and
card visibility can affect the system's ability to accurately recognize
hand combinations.

2. Real-World Variability:

o

The system's effectiveness can be impacted by real-world variability
such as inconsistent card layouts, player movements, and
background distractions. These factors can introduce challenges

40

that were not fully accounted for during the development and
testing phases.
3. Computational Requirements:
o High-performance model training and real-time recognition may
require significant computational resources, potentially limiting the
system's accessibility for users with less powerful hardware.

In summary, while the poker hand recognition system represents a
significant technological advancement, it is important to acknowledge its current
limitations. These include a focus on standard hand combinations, the absence of
individual card recognition, and critical ethical considerations. Recognizing and
addressing these limitations will be key to refining and expanding the system's
capabilities in future development efforts.

17. Future Work

Building upon the foundation established in this project, future work can
explore several avenues to enhance the system's capabilities, broaden its
applications, and ensure it remains at the cutting edge of poker hand recognition
technology.

17.1 Enhanced Model Training

1. Exploring Advanced Architectures:

o Deep Learning Models: Experimenting with advanced deep learning
architectures such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Transformer-based models
can significantly improve the system's ability to accurately recognize
and differentiate poker hand combinations.

o Transfer Learning: Leveraging pre-trained models from related
domains and fine-tuning them on poker-specific data can enhance
performance by utilizing existing knowledge.

2. Optimized Training Techniques:

o Data Augmentation: Implementing sophisticated data
augmentation techniques to create a more diverse and
comprehensive training dataset can help the model generalize
better to varied real-world scenarios.

o Hyperparameter Tuning: Systematically adjusting hyperparameters
such as learning rate, batch size, and optimizer types through
methods like grid search or random search to identify optimal
settings that maximize model performance.

o Cross-Validation: Using cross-validation techniques to ensure the
model's robustness and reliability by training and validating on
different subsets of the dataset.

41

17.2 Advanced Hand Analysis

1. Pot-Odds Calculation:

o Mathematical Integration: Developing modules to calculate
pot-odds and equity based on the recognized hand and the current
game state can provide players with critical insights into their
betting strategies.

2. Strategic Recommendations:

o Optimal Strategy Suggestions: Implementing algorithms that
suggest optimal strategies based on hand strength, table position,
and game dynamics can enhance decision-making for players.

o Opponent Analysis: Incorporating features to analyze opponents'
play styles and tendencies, helping users adapt their strategies
accordingly. This could include tracking betting patterns, win rates,
and common hand combinations.

17.3 Mobile Application Development

1. Cross-Platform Compatibility:

o Android and iOS Support: Developing a mobile application that is
compatible with both Android and iOS platforms, allowing users to
access the system's capabilities on their smartphones or tablets for
convenience.

2. User-Friendly Design:

o Intuitive Interface: Creating a mobile interface that is intuitive and
easy to use, ensuring a seamless user experience with responsive
design and interactive elements.

3. Real-Time Processing:

o On-Device Optimization: Ensuring the system runs efficiently on
mobile devices by optimizing the model for lower computational
power and leveraging on-device processing capabilities.

o Cloud Integration: Utilizing cloud-based services for heavy
computational tasks, allowing the mobile app to offload processing
to remote servers and deliver results in real-time.

17.4 Multi-Player Integration

1. Extending Recognition to Multi-Player Settings:
o Multi-Player Hand Recognition: Developing the system to recognize
and analyze hands in a multi-player poker setting.
o Identifying and tracking hands for several players simultaneously,
ensuring recognition and analysis for each player in real-time.
2. Comprehensive Game Analysis:
o Real-Time Multi-Player Analysis: Providing tools for real-time analysis
of a multi-player game, including the ability to track community
cards, player actions, and overall game state.

42

3. Collaborative Features:

o Shared Insights: Implementing features that allow multiple users to
collaborate and share insights during a game, enhancing the overall
strategic depth and engagement.

o Live Streaming Support: Integrating with live streaming platforms to
provide real-time analysis and commentary for online poker games,
offering viewers an enriched viewing experience.

17.5 Additional Future Directions

1. Individual Card Recognition:

o Rank and Suit Identification: Enhancing the system to recognize
individual card ranks and suits, providing more granular data and
expanding its analytical capabilities.

2. Ethical Safeguards:

o Responsible Use Enforcement: Developing mechanisms to ensure
the system is used ethically and in compliance with online poker
regulations, such as monitoring usage patterns and implementing
restrictions for competitive play.

3. User Customization:

o Personalized Settings: Allowing users to customize the system's
interface and functionality according to their preferences, including
adjustable display options, notification settings, and analysis depth.

In conclusion, future work on this project holds great potential to
significantly advance its capabilities and applications. By focusing on enhanced
model training, advanced hand analysis, mobile application development, and
multi-player integration, the system can evolve into a comprehensive and
versatile tool for both casual and serious poker players. These enhancements will
not only improve the accuracy and utility of the system but also ensure it remains
a cutting-edge resource in the realm of poker hand recognition and strategy
analysis.

18. Conclusion

This project presents the development of an Al-powered poker hand
recognition system. By utilizing computer vision and machine learning
techniques, the system automates and streamlines hand identification, offering
benefits for both casual and serious poker players. This project not only enhances
gameplay efficiency but also serves as a valuable educational tool. Furthermore, it
fosters the exploration of Al applications in real-world scenarios, paving the way
for further innovation in the field.

43

/s

PokerEye

Al-Powered Poker Hand Recognition System

Product of Aydie’s Avenue

Averue

aydie.in

business@aydie.in

© 2023 Aydie's Avenue. All Rights Reserved

=

https://aydie.in/
mailto:business@aydie.in

